a CENTRALE NUCLEAIRE z

 

 

PHOTOCENTRALENUCLEAIRE

Une centrale nucléaire est une centrale électrique, utilisant la fission nucléaire de matières fissiles pour produire de la chaleur dont une partie est transformée en électicité. C'est actuellement la principale mise en œuvre civile de l énergie nucléaire.

Une centrale nucléaire est constituée d'un ou plusieurs réacteurs nucléaires (jusqu'à 7), dont la puissance électrique varie de 40 MW à plus de 1450 MW. Le futur réacteur ERP aura une puissance de 1600 MW. En 2006, 442 réacteurs fonctionnent dans 31 pays différents dans le monde, soit un total de 370 GW produisant environ 17% de l'électricité mondiale.

Histoire

Le 27 juin 1954, la première centrale nucléaire civile fut connectée au réseau électrique à Obninsk en URSS, avec une puissance de production d'électricité de 5 Mégawatts. Les centrales nucléaires suivantes furent Marcoul Marcoule en Provence le 7 janvier 1956,Sellafield au Royaume-Uni, connectée au réseau en 1956, et le Réacteur nucléaire de Shippingport aux Etats-Unis, connecté en 1957. Cette même année, les travaux de construction du premier réacteur à usage civil en France (EDF1) démarrèrent à la centrale nucléaire de Chinon.

La puissance nucléaire mondiale a augmenté rapidement, s'élevant de plus de 1 gigawatt (GW) en 1960 jusqu'à 100 GW à la fin des années 1970, et 300 GW à la fin des années 1980. Depuis, la capacité mondiale a augmenté beaucoup plus lentement, atteignant 366 GW en 2005, en raison du programme nucléaire chinois. Entre 1970 et 1990 étaient construits plus de 5 GW par an (avec un pic de 33 GW en 1984). Plus des deux tiers des centrales nucléaires commandées après janvier 1970 ont été annulées.

 

Description

Schéma de principe d'une centrale nucléaire

Une centrale nucléaire regroupe l'ensemble des installations permettant la production d'électricité sur un site donné. Elle comprend fréquemment plusieurs tranches, identiques ou non ; chaque tranche correspond à un groupe d'installations conçues pour fournir une puissance électrique donnée (par exemple 900 MWe, 1300 MWe ou 1450 MWe). En France, une tranche comprend généralement :


Les autres installations de la centrale électrique comprennent :

 

Fonctionnement technique

réacteur à eau bouillante: barre d'arrêt d'urgence  barre de contrôle assemblage combustible protection biologique sortie de vapeur entrée de l'eau protection thermique

réacteur à eau bouillante:

  1. barre d'arrêt d'urgence
  2. barre de contrôle
  3. assemblage combustible
  4. protection biologique
  5. sortie de vapeur
  6. entrée de l'eau
  7. protection thermique

Dans une tranche nucléaire, le réacteur nucléaire est en amont d'une installation thermique qui produit de la vapeur transformée en énergie mécanique au moyen d'une turbine à vapeur ; l'alternateur utilise ensuite cette énergie mécanique pour produire de l'électricité.

La différence essentielle entre une centrale nucléaire et une centrale thermique classique est matérialisée par le remplacement d'un ensemble de chaudières consommant des combustibles fossiles par un réacteur nucléaire (phénomènes nucléaires) et (fusion).

Pour récupérer de l'énergie mécanique à partir de chaleur, il est nécessaire de disposer d'une source chaude et d'une source froide.

Ainsi, une tranche nucléaire de type REP comporte trois circuits d'eau importants indépendants :

Il est constitué, suivant le type de tranche, de 3 ou 4 générateurs de vapeur associés respectivement à une pompe (par GV), un pressuriseur assurant le maintien de la pression du circuit (155 bar) puis d'un réacteur intégrant des grappes de contrôle et le combustible. Il véhicule, en circuit fermé, de l'eau liquide qui extrait les calories du combustible pour les transporter aux générateurs de vapeur (rôle de caloporteur). L'eau du circuit primaire a aussi comme utilité la modération des neutrons (rôle de modérateur) issus de la fission nucléaire. La thermalisation des neutrons les ralentis pour interagir avec les atomes d'uranium 235 et déclencher la fission de leur noyau. Par ailleurs, l'eau procure un effet stabilisateur au réacteur: si la réaction s'emballait, la température du combustible et de l'eau augmenterait. Celà provoquerait d'une part, une absorption des neutrons par le combustible (effet combustible) et d'autre par une modération moindre de l'eau (effet modérateur). Le cumul de ces deux effets est dit "effet puissance": l'augmentation de ce terme provoque l'étouffement de la réaction d'elle-même, c'est un effet auto-stabilisant.

Celle-ci est composée de plusieurs étages séparés et comportant chacun de nombreuses roues de diamètre différent. D'abord, la vapeur subit une première détente dans un corps haute pression (HP; de 55 à 11 bar) puis, elle est récupérée, séchée et surchauffée pour subir une seconde détente dans les corps basse pression, (BP; de 11 à 0.05 bar). On utilise les corps BP dans le but d'augmenter le rendement du cycle thermo-hydraulique.
La sortie du dernier étage de la turbine donne directement sur le condenseur, un échangeur de chaleur dont la pression est maintenue aux environs de 50 mbar absolu (vide) par des pompes à vide. L'eau condensée dans cet appareil est réutilisée pour réalimenter des générateurs de vapeur.

L'énergie mécanique produite par la turbine sert à entraîner l'alternateur qui la convertit en énergie électrique, celle-ci étant consommée par le réseau.

Lorsque la tranche nucléaire débite de la puissance électrique sur le réseau, on dit qu'elle est "couplée" au réseau. La déconnexion intempestive de l'alternateur au réseau (découplage), nécessite une réduction immédiate de l'alimentation en vapeur de la turbine par des vannes de réglage disposées sur les tuyauteries de vapeur, faute de quoi, sa vitesse de rotation augmenterait jusqu'à sa destruction, en raison de la force centrifuge excessive s'exerçant alors sur les aubages. Néanmoins, dans ce cas-ci, la tranche reste en service à faible puissance: la turbine est en rotation et reste prête au recouplage immédiat sur le réseau.

 

Les différents types de centrales